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- Random _rotations and multivariatr normal simulation

oy
R.WM. Wedderburn

Rothamsted Experimental Station

It may sometimes be necessary to determine ewpirically

distridution of some multivariate statistic conditional on tnc
sample mean and dispersion matrix or conditional on the uncorrecied

iispersion matrix, assuming that the population distridbution

multivariate normal, This paper describes how %o generate multi-~

ariate normal samples conditional on a given mean and dispersion

<

matrix, The problem is shown to reduce %o that of generating a
random "uniformly distributed" orthogonal matrix, What is meant

by a "uniformly disitributed" orthogonal matrix is explained and i
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is shown how one can be generated, Computational details &

and an Algorithm is given in the algorithms supplement of
& &

Sournal.
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. Introiuction

This paper dcséribes the theoretical background to an alroriithn

inithis issue of Applied Statistics (Wedderburn, 1975). The problom

thdt led.td this work was suggested by a paper of Gower and Hanlield (1975}, *

who considered variéus statictics desiymed to measure the degree of
clustering among members in a multivariate sample. In parsicular, Gower
and Banfield examined the distribufion of tHese statistics wnen the

sample came from a standard muliivariafe normal distribution. It seemed

that a more realistic null hypothesis would be that the samdlc cia

& multivariate normal distribution with unknown mean and dispersion, We

could obtain a test of this hypothesis based on one of these staiisti
if we Xnew the distribution of the statistic conditional on the sample
medn and dispersion., Under the null hypothesis this cohditional distribution

would be independent of the population parameters because of the suiliclency 7

of the sample mean and dispersion.

Now if this condifional distribution is to be investigatec ~

»

simulation, we have the probliem of generajing a random sample

multivariate nornal. distridution conditional.on a given sample mean

and dispersion (i.e. & sample with thé same mean and dispersior as ihe

observed sample)s -A'slightly simpler proviem {which is shown in Seciion <

Yo lead eaﬁily'po a solution &f this problem) is to produce &
Ln ) . %er0
of size/of & pevariite normal distribution with mean Jeondivional on & &

uncorrected sample dispersion matrix, that is, to generate an ruvy

whnere each row is an independent sample [rom I\‘p (0,73

values of ;/:'g. Again this conditional distridbuiion does not derend on

convenient, I shall'assume thaty = I, IfnXyp,

she singular value decomposition form :
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This expression becomes unique if we require that tne diagonal
elementis ofL\ are positive and in descending order (excluding excep ThonE

cases of equality amongst the elemcnts of[_,\ that occur with a prodabl

of zero),and if we .also impose some condition on the rows of 3 such an
that thedr firs‘{ non-zere el.emcnts are positive. ‘.\fow ,’.",‘f = Cy : e
It will be shown somewhat informally below T.hat‘ cond?ltional on 5'};. {; and
ga‘:e fixed and ’E_”'nas the same disiribution as the first p columns of

2 "uniformly distributed" nxn orihogonal matrix (.see also James (‘.954}\,.
First, however, it is appropriate to discuss what is meant by a unifozmly

distriduted orthogonal matrix.

1, Random rotations

The set of all nxn orthogonal matrices is called the orino

RIS MR

froun of order n, and will be denoted here by O . (For the purposes

<

of this paper it is not necessary 4o know what a group is,) Tor an

orthogonal matrix H, det I = 1. ’;‘hose‘having the property that

t

det fl = 4 form the special orthogonal group.of order.n (SO“). ey

represent pure rotations, while orthogonal matrices for which
NSy

involve reflections,

For the nxn matrix 5 to be orthogonal its nz'elements must sati

in(n+1) independent relationships leaving In{ni-1) degrees of freed
. : ; AU N

for them. If we regard mxn matrices as poinis in 1 ~dimensional sdace,

then 0 forms a k-dimensional manifold where k = inn=1), (4 maniloid

is ‘just the miltidimensional generalisation’ of & curve, surface, AiC.;

thus a one-dimensional manifold is a cuxve, and a twomdimemsional
is a surface.) This k-dimensional manifold consists of two sep.riie

portions, nazely SO (the rotations) and its compienent (reflections,

podsibly accompanied by rotations), Just as we cen measure
I

of'a cuzve and the area of 2, surface, SO we have a measurs celled the

sontent of & k-dimensional marifold. .
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sénse t5 $alk a‘her.t a random point on the manifold having a uniforn
distridbution, meaning thai tihe probaﬁility of the point deing in a
ziven portion § of that manifold is proportﬁnal to the content of 5.
fherefore we can talk about random uniformly distributed members of
On and SOn provided. that® they have finite contents. That they do in

fact have finite contents is shown in the appendix.

For the rest of this section the discussion wilil be confined <o 0_‘

for the sake of definiteness, but it applies equally 3o son. Let G
e a matrix in On. By the operation of matrix multiplication on the

ieft, G transforms each mairix H in 0_‘ into the matrix CGF in 0_.

H as a point in n ~dimensional space, and rewriiing i3 colw
2

is represenied by the n~ x n

Regarding

ore under anosher, this fransformation of

Y

%

|
.
G |

P

wnich is iiself an orthogonal mairix.

Yow orthogonal transformations preserve content and hence

is uniformly distriduted in On, so is GH for any fixed G in O

Wa

2 similar way we can show that IG is uniformly distributed.

say ihat the uniform distridution on On is voth left- and ri

A _general theory of invariant measures on groups indicates

wniform distribution must be the only invariani measure on O that is

irvariant (Helmos (19350),
P
see tnis informally for continuous disiridutions,

either left~ srrigh

favariant distribution nad density £, (This means that the prozablilisy
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;"or the uniform distribution,

2, Random orthogonal transformations and the multivariate

Let X be a sample of size n from a p-dimensional multivariatc

normal distribution‘with mean § and variance L. Thea the ) o TANS

of X are independent random varidbles from ¥(0,1).

nxm. orthogonal matrix, Then the np components of ,‘LE.(, are obtained by an

rthogoral transformation from the components of X and so:the components

of HX are independent ¥(0,1) variables. [Thus UX has the same distric
as X. The decomposition of HX corresponding to (1) is simply

- (m)Ag

and so HP has the same distribution as 2. This holds when

tion matrix, But since it holds when E is

it also holds when H is random and independeny of X {as can be seen Tty :

considering the distribuvion of H? conditional

~ o be uniformly distributed in On and independent of X; we have when
trat HP nas t'ne’ same distridution as P. .

EIxiend P to an orthogonal matrix [g{’g] where T is defired in erms
of P in some suitable way. Conditional on i:, ‘}_[glg] is uniformly

distribused on On {by the right-invariance of the uniform disiridbuiion,.

Sinee thit holds for any P, the unconditional distribution of

n O_, dut 23 ”;1. fjg{i'g] and we have seen

as moniioned in the introducilon, since the result is establ

sions from N_(9,I) it also holds for ‘\‘p(g,;) since the disimibusion of X

et

X does not depend on L. .

can still write

{ whore now ¥
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the{ result of this paper still holds.

3, Generntion of random rotations

I shall use e to denote an n-dimensional vector whose ith component
is 1, the rest being zero,
¥Vssentially, the algorithm tr‘.be describved generrates a random

uniformly distributed member of SOn in the form
H= 31(51 )3.2(?,2)

where Z; is a unit vector in the space spanned by €.,

Bo1$2y)

reeer2 .

i1
Ei(zi) is a plane rot-tion that sends e, to z.. We take Bi(?«i)=5'
Any arbitrary definition of Bi(-_e_i) will do provided that it is a
rotation that sends & to -8y and keeps 51»'"".'52-1 fixed, Vg see
that z;, has to lie on an (n-i+1)-dimensional hyperspnere. We zaxe
the _z_i‘s to be uniformly and independently distributed on these
nyperspheres, The proof that f_x is uniformly di;tributed is given in
the apperdix, i E

In general a random member of On rather than SOn is needed io

produce the required conditioned sample from a muliivariate normal

distribution though in the application to the problem of Gower and
Banfield mentioned in the intrpduction it would make no difference;

again if only a subset of the columns of the random matrix

required it makes no difference whether we sample from Or or 50_.

If roguired, a random membexr of On can be produced by generatin

in SO ané tnen with probability % multiplying a column of ¥ by -i.
n P ~

4, Samnline from the muliivariate normal distribution with non-nero :

Let X be 2 sample of size n from D.'D(u,z). Then Y=0X is a s&
of size n-1 from NE(O,Z) and the sample dispersion mairix ol X is given

i = 5 . : T e
L7, Y'Y, where T .is ithe {n-1)xn Helmert mairix defined
-t s~ £ ;

i

oy S =
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The sample mean of X is given by i =1; .S Suppose that tne decomposiiien

of Y corresponding to (i) is

Y =PAQ

= SRy

n

= PAQ whers P is the first .p columns of an (n-i)x(n-1)

Tnen if we set

)'<:

orthogonal matrix, and 2(: = ’]g'-e-g':‘:[l thenX is the required sample from a
rultivariate normal distribution conditioned on m and S.
5. Computational details

Suppose we wish to generate the first prows ol a' unifomly
distributed nxn rotation matrix, From the preceding section this can

be given by

1
= Ry (5 0By(zp) e B, 4 2, )(, > ,
for k < n this sim;;lifies to

B o= Rz Rylz)eneBy (zk)( )

Thus ¥ could be produced by siarting wit K(;p and suyccessively

1o 1t

appiying the rotations R (2, ) eeqs2 (z,)., It is sufficient o descrite
~k =k =1 =1

the final stage of the calculation, namely the application of R.(

Vie nave a nxk array-f of elements 'ni 3 wnich, excepi for
o )
row and column containg
RylE,) el wher = min net
Ry{z,)e R (z;) where m (g, n=1)

Tae first row and column have not been filled in, bui we know thaz

been, h would have been 1 and the rest ol

ey hed

1,1
and. column would have been zers, We generate a vecior

random normal deviates VooV storing the vector in the [irci colu

;vi will be a random point on

wno rotation
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R (zy) = (5—255')L 5 S (2)

where X is the unit vector in the diwection 91 + Zie The first Moeloc

in a Househelder tranaform (sce Wilkinson (1965), Chapler 6) and

roprasents a reflection in'the hyperplane perpendicul

reader draws a diagram of the plane containing gy and z, it should become
= ~1

clear why the product of these two reflections gives ithe wequired result,

X 2 2 22
We now caloulate A =3 vy and B = V] + A= 4— Vi) so that z = v//3,
3 =3

tut we do not actually calculate z yei, The vector x would be given oy
X =1 v1//B = (/B+v1)//3 and x; = vi/,/B for 4 > 1, For §=2,...,%

we perform the following operaiions s

3 m, _?—
() FomC -i"vihi,j 3
‘ This is equivalent to finding /B )’c_'bj where 'I)_j is the

jth column of H,

- 2C
CoN T i PEen K, -
(1i) For i=2,...,n subtract 5 vy from X oy

(iii) Set hi‘,d =g% (/B+v1), (but some care is needed o ‘avoid
possible irouble from rounding errors here - see below).

Finally, foxr is=l,...,n we set hi,‘l = vj/‘/B. The dangerous step
is (diii) avove, If v, is negative, serious loss of accuracy may cceur
in calculating MB+V1 s Note, however, that

(/B+v1) (\/B-v_l) =38 - 212 = A

so that if v, is negative, ‘\/B+v1 can be safely calculated as A/{»/}E-v1 3.

One further complication may occur when 4 = 0O and vy < 0 indicasing
that .z, = -e.. For this case, we iake
{
R (z)={ =11
A

O a further sample of random normal deviates is inken, Wus wnis

=

Hy
Y

1t

should practically never happen.
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‘Avpendix B
In this appendix, some resulis about invariang diétri‘auzipr.s on

On or S()n ard derived first. It follows from the discussion in the

last paragraph of section 1 or from the genepal theoxy of invari

measures On groups that a lefvz- or right-invarisnt distrivution
be uniform. W, have also observed that the uniform distribution can
only be defined on o, (oz SOn) iro, (or SOﬂ) has finite econtent. It
will be shown that the algorithm described in-this paper generates a
left-invariant distribution on son. It will then follow that this
distribution is wniform and hence that Sdn has finite content., It is
fairly easy to see that the conient of 0n is Jjust twice thai of 3¢
and so is also finite,

Yo attempt is made io be mathematically rigorous. One can

rigour by using results about invariant groups! such as thorein
chapter of Halmos {1950).
We can now prm?e that the ilgorithm descrived in 'section 3 proiuces

& random memoper SO with a left-invariant distridbution., The g

by induction on n. For n = 1, since SO‘I contains only one el

there is nothing to prove, For n > 1 we can write
= 2(z,) 4

where 4 = ,‘32(52)..‘12

)(o‘v Iifns=2).

n‘l

hypothesis, 4 has a left-invariant distribution in the group of
which leave &y fixed and A is independent of Zqe For any fixed G,

consider CH. Bvidently GHe, = Gzy. Now we can write

g (6z;) 3 ' {2
wmere 3Ry (9207 0 2i(z,)

Kow E\!e,l = e1 and B is independent of A. ‘Conditional on z

and so 34 has the same disiribuiion as A. Since this

tribvution does not depend on 2, we see the
S
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as A and is independent of e Further Gz, han -the pame . distribution
- s - oo
as "51 {namely the uniform digtribution on the wnit n=dimensional hypere

nphorc). Thus 7, and A havo the same joint dintribulion as C:-,_‘ and DA,
-~ i i

1

and compaving (1) and (2) we see that U and GH have the same diutribulion,
-~ o
Now from the ahove remarks, it follows that H is uniformly Gistritused
| J '

: . . {
in SOn.
In aonclusion, some readers may be intercsted io note that much

of the discussion can be generalised to invariant distridutions on otier

groups. For instance, we can show that a left«invariant distrivusion

in a group G is also right-invariant; for let a and © be indeponiently
L)

and identically distributed in G with a left-invariant distribution,

Then ™' has a righte-invariant distribution, .Then v™"a has tne same
distridbuiion as -a and also the same a.s.b-1; hence the distribution
is both left and right-invariant, It is also unigue. If now there

is a2 chain of subgroups

. 1
60,20 (D...0D6 ={e}

in G,

nd if we have a set of left coset represéntptives for G,
: i

1
(i=1,...,n) and if we can generate left-invariant distridbutions on
these sets of lef$ coset representatives we can apply an algorithm

similar to that in ihis paper io gen.ez‘ate +the invariant disiribution
on G,

A trivial case of this occurs when G is the group of permuiations
on'n objects. In f{act, the method of this paper was to some extent

suggested by the method of generating random permutations given on

% pame 125 of ¥nuth {1969).




